Fe-Nd-Sb (Iron-Neodymium-Antimony)

V. Raghavan

Recently, [2007Zen] determined an isothermal section for this ternary system at 500 °C, which depicts five ternary compounds.

Binary Systems

The Fe-Nd phase diagram depicts two intermediate phases: Fe₁₇Nd₂ (Th₂Zn₁₇-type rhombohedral) and Fe₁₇Nd₅ (hexagonal, space group $P6_3/mcm$). The Fe-Sb phase diagram [1997Ric] has two intermediate phases: FeSb_{1-x} (41-49 at.% Sb; *B*8₁, NiAs-type hexagonal) and FeSb₂ (*C*18, marcasite-type orthorhombic). The Nd-Sb phase diagram [1992Cac] has the following intermediate phases: Nd₂Sb (La₂Sb-type tetragonal), Nd₅Sb₃ (*D*8₈, Mn₅Si₃-type hexagonal), Nd₄Sb₃ (*D*7₃, Th₃P₄-type cubic), NdSb (*B*1, NaCl-type cubic), and NdSb₂ (SmSb₂-type orthorhombic).

Ternary Compounds

Table 1 lists the structural characteristics of the five ternary compounds of this system: Nd₆Fe₁₃Sb (τ_1 or A), \sim NdFe_{2.5}Sb₂ (τ_2 or B), NdFe_{1-x}Sb₂ (τ_3 or C) ($x \sim 0.35$), NdFeSb₃ (τ_4 or D), and NdFe₄Sb₁₂ (τ_5 or E) [2007Zen]. The

notation τ_1 , τ_2 , etc. is adopted here in place of the symbols A, B, etc. used by [2007Zen]. The compounds found for the first time by [2007Zen] are τ_2 (B) and τ_4 (D).

Isothermal Sections

With starting metals of 99.9% Fe, 99.8% Nd, and 99.95% Sb, [2007Zen] arc-melted or induction-melted alloys under Ar atm. The final anneal at 500 °C for 200 h was followed by quenching in liquid nitrogen. The phase equilibria were studied with x-ray powder diffraction and scanning electron microscope equipped with energy dispersive analysis. The isothermal section constructed by [2007Zen] is redrawn in Fig. 1. No solubility of the third component in the binary compounds of the system was found.

The FeSb-Sb-NdSb region of the system was investigated at 597 °C by [1999Sol]. With starting metals of purity of 99.99% Fe, 99.9% Nd, and 99.999% Sb, [1999Sol] arcmelted under Ar atm alloy samples, which were annealed at 597 °C for 2 weeks and quenched in water. The phase equilibria were studied with X-ray powder diffraction. The isothermal section at 597 °C (870 K) constructed by [1999Sol] for the FeSb_{1-x}-Sb-NdSb region is redrawn in Fig. 2. The ternary phases τ_3 (NdFe_{1-x}Sb₂) and τ_5

 Table 1
 Fe-Nd-Sb crystal structure and lattice parameter data [2007Zen]

Phase	Composition, at.%	Pearson symbol	Space group	Prototype	Lattice parameter, nm
$Nd_6Fe_{13}Sb (\tau_1 \text{ or } A)$	65 Fe		I4/mcm	Co11Ga3Ta6	a = 0.80903
	30 Nd				c = 2.31923
	5 Sb				
${\sim}NdFe_{2.5}Sb_2\;(\tau_2 \text{ or }B)$	45.4 Fe				
	18.2 Nd				
	36.4 Sb				
$NdFe_{1-x}Sb_2 (\tau_3 \text{ or } C)$	$Fe \sim 18$	tP8	P4/nmm	CuSi ₂ Zr	a = 0.43514
	$Nd\sim 27$				c = 0.96518
	$Sb\sim55$				
NdFeSb ₃ (τ_4 or D)	20 Fe		Pbcm	CeNiSb ₃	a = 1.26823
	20 Nd				b = 0.61670
	60 Sb				c = 1.81850
$NdFe_4Sb_{12} \ (\tau_5 \ or \ E)$	23.5 Fe	<i>cI</i> 34	Im3	Fe ₄ LaP ₁₂	a = 0.9130
	5.9 Nd				
	70.6 Sb				

Fig. 1 Fe-Nd-Sb isothermal section at 500 °C [2007Zen]. Narrow two-phase regions are omitted

Fig. 2 Fe-Nd-Sb isothermal section at 597 °C [1999Sol]

(NdFe₄Sb₁₂) are present. The ternary compound τ_4 (NdFeSb₃), which falls within this region, was not found at 597 °C by [1999Sol]. The triangulations are different in Fig. 2, as compared with Fig. 1.

References

- 1992Cac: G. Cacciamani, R. Ferro, and H.L. Lukas, Assessment of the Nd-Sb and Pr-Sb Binary Systems and Calculation of the Nd-Pr-Sb Ternary System, Z. Metallkd., 1992, 83(9), p 669-672
- 1997Ric: K.W. Richter and H. Ipser, Reinvestigation of the Binary Fe-Sb Phase Diagram, J. Alloys Compd., 1997, 247, p 247-249
- 1999Sol: P. Sologub and P. Salamakha, Isothermal Sections of the Nd-M-Sb Systems at 870 K (M = Cr, Fe, Co, Zn), J. Alloys Compd., 1999, 285, p L16-L18
- 2007Zen: L. Zeng, P. Qin, L. Nong, J. Zhang, and J. Liao, The 773 K Isothermal Section of the Nd-Fe-Sb Ternary System, J. Alloys Compd., 2007, 437, p 84-86